REDUCTION OF N2O BY BIOLOGICAL N2-FIXING SYSTEMS

R. W. F. Hardy and E. Knight, Jr.
Central Research Department*, Experimental Station
E. I. du Pont de Nemours and Company, Wilmington, Delaware

Received March 29, 1966

Nitrous oxide, cyanide, azide, carbon monoxide and nitric oxide have been reported as inhibitors of nitrogen fixation¹. We have now been able to show catalysis of the reduction of some of these inhibitors by the N_2 -fixing system of Azotobacter vinelandii or Clostridium pasteurianum², e.g.,

Schöllhorn and Burris also have evidence for reaction (3) and have extended the list to include acetylene l_1 . The characteristics of these reactions-requirement for ATP, reductant and an extract with N2-fixing activity and inhibition by C0-parallel those of nitrogen fixation $^{5-7}$.

Previous studies have shown that N2-fixing extracts of $\underline{A}.vinelandii$ and $\underline{C}.pasteurianum$ have a reductant-dependent ATPase⁸⁻¹⁰ and \underline{a} n ATP-dependent H2 evolution¹⁰⁻¹². This ATPase was proposed to function in the activation of electrons that are used for N2 reduction or H2 evolution⁸, 10. Nitrous oxide was found to inhibit ATP-dependent H2 evolution⁷ but not reductant-dependent ATPase of $\underline{A}.vinelandii^8$. This lack of inhibition by N2O of reductant-dependent ATP utilization concomitant with the inhibition of ATP-dependent H2 evolution suggested that some of the electrons activated by this ATPase were utilized for reduction of N2O rather than evolution of H2. This communication reports the reduction of N2O to N2 by N2-fixing extracts of $\underline{A}.vinelandii$ and $\underline{C}.pasteurianum$.

^{*}Contribution No. 1203

Table 1

N2O Reduction By The N2-Fixing System Of A.vinelandii

Gas	Product Formed	Incubation System				
Phase		Complete	-C~P, -ATP	-Na2S204	-Enzyme	
			r. at 30°			
N ₂ 0	N ₂ H ₂ Creatine NH ₃	37 22 210 0.8	10	11 2 82	12 0	
N ₂	инз	13				
Не	N2 H2 Creatine	0 55 200		0 2 84		

System contained per 4 ml in µmoles: Tris·HCl, 200; creatine phosphate (C~P), 224; ATP, 20; and Na₂S₂O₁, 80 all at pH 7.0; and MgCl₂, and in mg protein: heated extract of N₂-grown A.vinelandii, 15; and creatine kinase, 0.8. Gas phase flushed repeatedly and filled with 0.55 atm of N₂O, N₂ or He.

METHODS

Enzyme Sources - Heated extracts of cells of A.vinelandii, ATCC 12518, were prepared as described for N2 fixation^{8,12}. Those from cells grown on air (N2-grown) had N2-fixing activity while those from cells grown on urea with a gas phase of 80% A:20% O2 (urea-grown)¹³ did not. Cell free extracts of dried cells of C.pasteurianum, ATCC 6013, were also prepared as described for N2-fixation¹⁴. Those from cells grown on N2 (N2-grown) had N2-fixing activity while those from cells grown on NH3 with a gas phase of A (NH3-grown) did not.

<u>Determinations</u> - Gases were analyzed with a Consolidated Mass Spectrometer and the initial gas phase of N_2O or He was used as an internal standard. The spectrum of N_2 was corrected daily for the N_2 fragment from N_2O . Reductant-dependent ATPase was determined as the increase in creatine released from creatine phosphate in the presence of dithionite^{8,15}. The synthesis of N_{H3} from either N_2 or N_2O was measured by titration after microdiffusion¹⁶; He replaced N_2 or N_2O as a control. Protein was estimated with biuret reagent.

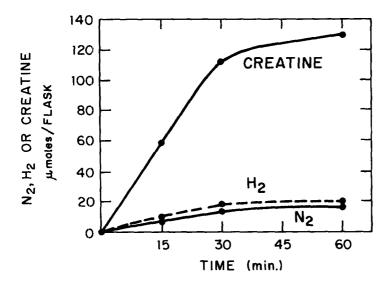


Fig. 1. Time course of N_2O reduction. System is described in Table 1; gas phase, 0.55 atm of N_2O . Values of N_2 were corrected with O time value of 14 pmoles/flask.

RESULTS

Requirements for N₂O Reduction - Extracts of N₂-grown A.vinelandii reduced N₂O to N₂ and traces of NH₃ (Table 1). The substrate requirements were the same as those for N₂ fixation, e.g., ATP and Na₂S₂O₄⁷. The complete system formed 26 µmoles of N₂/15 mg protein in 1 hr (corrected for average N₂ found in controls, e.g., -enzyme, -ATP source, and -Na₂S₂O₄) and 0.8 µmoles of NH₃ with 0.55 atm of N₂O as substrate while it formed 13 µmoles of NH₃ with 0.55 atm of N₂ as substrate. Thus, four times as much N₂O was reduced to N₂ (2 electrons required) as N₂ to NH₃ (6 electrons required). Evolution of H₂ was decreased when N₂O reduction occurred. This decrease in electrons evolved as H₂ corresponded to the electrons utilized for N₂ formation. Reductant-dependent ATPase activity was not affected by N₂O reduction.

Time Course of N₂O Reduction - The rates of the three related reactions, N₂O reduction to N₂, H₂ evolution and reductant-dependent ATPase are shown in Fig. 1. In this experiment the creatine phosphate was exhausted after about 30 min at which time all three reactions ceased. Evolved H₂ or even a gas phase of 30% of H₂ in place of Na₂S₂O₄ in the complete incubation mixture of Table 1 did not reduce N₂O to N₂.

Table 2

Dependency Of N2O Reduction On Extracts Of N2-Grown Cells

Extract		Substrate Products	N ₂	0 H ₂	N2 NH3
	mg protein		µmoles	in 1 hr	at 30°
A.vinelandii N2-grown cells Urea-grown cells	22 27		38 4	13 1	18 0
C.pasteurianum N2-grown cells NH3-grown cells	36 43		22 0	52 27	13 0

System for A.vinelandii, Table 1; for C.pasteurianum per 4 ml in µmoles: potassium cacodylate, 200; creatine phosphate, 224; ATP, 20; and Na₂S₂O₄, 80, all at pH 6.5; and MgCl₂, 20; and in mg: creatine kinase, 0.8. Gas phase, 0.55 atm. Product N₂ corrected with minus energy control.

Dependency on N₂-Fixing Extracts - The reduction of N₂O is dependent on the induced enzymes of N₂ fixation found in N₂-grown but not urea- or NH₃-grown cells. Extracts of N₂-grown A.vinelandii or C.pasteurianum both reduced N₂O to N₂ and fixed N₂ while those of urea-grown A.vinelandii or NH₃-grown C.pasteurianum had negligible (0-10%) N₂O-reducing activity and did not fix N₂ (Table 2).

Effect of CO - Reduction of N₂O to N₂ was inhibited 75-90% by 0.1 atm of CO (Table 3). Electrons not used for N₂O reduction were evolved as H₂. Thus the decrease by CO in N₂ synthesis from N₂O (31 μ moles) by extracts of $\underline{\mathbf{A}}$. vinelandii corresponded to the increase in ATP-dependent H₂ evolution (32 μ moles).

DISCUSSION

Nitrogen-fixing extracts of both \underline{A} -vinelandii and \underline{C} -pasteurianum are shown to reduce N_2O to N_2 . The substrate requirements and extract dependency for this reduction are identical to those for N_2 fixation, reductant-dependent ATPase or ATP-dependent H_2 evolution 5-12. Therefore, it is proposed that the reduction of N_2O is catalyzed, at least in part, by enzyme(s) of the N_2 -fixing system. Electrons activated by the reductant-

Table 3 Effect Of CO On NoO Reduction

		Substrate	N20		N20:CO(0.8:0.2)	
Extract	Products	\overline{N}_2	H ₂	N ₂	H2	
	mg protein		µmoles in 1 hr. at 30°			
A.vinelandii	15		3 ¹ 4	21	3	53
C.pasteurianum 36			22	52	6	135
System for A.vine	elandii, Table	1; C.pasteuria	num, Tab	le 2.	Gas phase	
0.55 atm. Produc						

dependent ATPase of the No-fixing complex are utilized for NoO reduction. This conclusion is supported by the following observations: 1) NoO doesn't affect electron activation as measured by reductant-dependent ATPase activity; 2) N2O decreases ATP-dependent H2 evolution in an amount approximately equal to the increase in N2 formation; and 3) inhibition by CO of N2O reduction eliminates the decrease in ATP-dependent H2 evolution. The inhibition by CO of N2O reduction also demonstrates that an enzyme or at least, site in addition to the reductant-dependent ATPase is required for N2O chemisorption and reduction. The activity of N2O as a competitive inhibitor of N2 fixation, the reduction of other inhibitors of N2 fixation by N2-fixing extracts2-4 and the inhibition of N_2 fixation as well as N_2 O reduction by CO suggests that "nitrogenase", the site of No chemisorption and reduction, rather than an N2O reductase is the site of N2O reduction. Thus N2O-reducing activity may occur in all organisms and extracts that have No-fixing activity. This suggestion is supported by the previously observed reduction of N_2O to N_2 by soybean root nodules 17 and assimilation of N₂O by cells of A.vinelandii 18.

REFERENCES

^{3.} Hardy, R. W. F. and Knight, E., Jr., in preparation.
4. Schöllhorn, R. and Burris, R. H., Fed. Proc., 25, 710 (1966).

^{5.} Hardy, R. W. F. and D'Eustachio, A. J., Biochem. Biophys. Res. Commun., 15, 314 (1964).

^{6.} Mortenson, L. E., Proc. Natl. Acad. Sci. U.S., <u>52</u>, 272 (1964).

- 7. Bulen, W. A., LeComte, J. R., Burns, R. C. and Hinkson, J., in "A Symposium on Non-Heme Iron Proteins: Role in Energy Conversion" (editor), A. San Pietro, The Antioch Press, Yellow Springs, Ohio, 1965, p. 261.
- 8. Hardy, R. W. F. and Knight, E., Jr., submitted to Biochim. Biophys. Acta.
- 9. Dilworth, M. J., Subramanian, D., Munson, T. O., and Burris, R. H., Biochim. Biophys. Acta., 99, 486 (1965).
- 10. Hardy, R. W. F., Knight, E., Jr., and D'Eustachio, A. J., Biochem. Biophys. Res. Commun., 20, 539 (1965).
- Burns, R. C., in "A Symposium on Non-Heme Iron Proteins: Role in Energy Conversion" (editor), A. San Pietro, The Antioch Press, Yellow Springs, Ohio, 1965, p. 289.
- 12. Burns, R. C., and Bulen, W. A., Biochim. Biophys. Acta., 105, 437 (1965).
- 13. Mumford, F. E., Carnahan, J. E. and Castle, J. E., J. Bacteriol., 77, 86 (1959).
- 14. Carnahan, J. E., Mortenson, L. E., Mower, H. F. and Castle, J. E., Biochim. Biophys. Acta., 44, 520 (1960), and U.S. Patent 3,236,741 (1965).
- 15. Ennor, A. H. in "Methods in Enzymology" (editors), S. P. Colowick and N. O. Kaplan, Vol. 3, Academic Press, Inc., New York, 1957, p. 850.
- 16. Mortenson, L. E., Anal. Biochem., 2, 216 (1961).
- 17. Hoch, G. E., Schneider, K. C., and Burris, R. H., Biochim. Biophys. Acta., 37, 273 (1960).
- 18. Mozen, M. M., and Burris, R. H., Biochim. Biophys. Acta., <u>14</u>, 547 (1954).